
Tetrahedron Letters 48 (2007) 5743–5746
A highly efficient asymmetric Michael addition of anthrone
to nitroalkenes with cinchona organocatalysts
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Abstract—A highly efficient asymmetric Michael addition of anthrone to nitroalkenes catalyzed by cinchona alkaloids was
described. Up to 99% ee of the corresponding adduct was obtained.
� 2007 Elsevier Ltd. All rights reserved.
Cinchona alkaloids have long been known as very useful
and robust catalysts for many kinds of organic reactions
before the recent explosion of ‘organocatalysis’.1

Although the first example of asymmetric reaction cata-
lyzed by cinchona alkaloids can be dated back to 1912,2

only after 1960s, with the development of asymmetric
phase transfer catalysts (chiral PTC),3 and asymmetric
dihydroxylation by Sharpless,4 cinchona organocata-
lysts have drawn much more attention and have been
widely used in a variety of asymmetric reactions.

As a unique class of bifunctional cinchona organocata-
lysts, cupreines and cupreidines have been proved to
be powerful chiral catalysts for a wide array of asym-
metric transformations5 only shortly after their first
application in the Baylis–Hillman reaction in 1999.6a

Compared to the previous traditional cinchona cata-
lysts, one of the most noticeable features of cupreines
and cupreidines is that they bear a phenolic OH group
at C 0-6 position, and a free hydroxy moiety at C-9 posi-
tion, which can be utilized to tune the steric conforma-
tion by further functionalization to achieve higher
efficiency in asymmetric reactions. Thus far, these dual
organocatalysts have been successfully applied in the
Baylis–Hillman reaction,6 conjugate addition,7 electro-
philic amination,8 and nitroaldol reaction.9
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Anthrone usually functions as a reactive diene in the
presence of base and a variety of dienophiles, furnishing
the corresponding Diels–Alder reaction products in
good yields rather than the Michael addition adducts.10

Only in few cases the corresponding Michael adducts
were isolated as by-products in Diels–Alder reactions.11

On the other hand, nitroalkenes, as a reactive Michael
acceptor, can be transformed into a variety of function-
alities due to the strongly electron-withdrawing nitro
group, which is seldom used in the Diels–Alder reaction
as a dienophile, although few examples have been
reported using nitroalkenes as dienophiles in the Diels–
Alder reactions.12 Therefore, we envisioned that the
reaction of anthrone with nitroalkenes, reactive Michael
acceptors, could exclusively produce the corresponding
Michael addition products in the presence of bifunc-
tional cinchona organocatalysts. In fact, we found that
the asymmetric Michael addition of anthrone to nitro-
alkenes could be achieved in good yields and ee’s in
the presence of cinchona organocatalysts. To the best
of our knowledge, this is the first report on the asymmet-
ric Michael addition of anthrone to nitroalkenes. Here-
in, we wish to report our preliminary results.

Initial examinations using anthrone 1a as a substrate
and nitroalkene 2a as a Michael acceptor for the asym-
metric Michael addition in the presence of a variety of
cinchona organocatalysts were aimed at determining
the optimal conditions and the results of these
experiments are summarized in Table 1. Using quinine
(Q) (10 mol %) as the catalyst in CH2Cl2 at 20 �C, the
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Entry Catalysts Temperature (�C) Time (h) Yieldb (%) eec (%)

1 Q 20 2 97 22 (�)
2 Q �10 4 99 44 (�)
3 Q �40 8 99 51 (�)
4 QD �40 8 99 50 (+)
5 BzQ �40 24 13 0
6 BzQ 20 8 58 0
7 CPN �40 8 95 80 (+)
8 b-ICPD �40 8 99 32 (�)
9 BzCPN �40 8 97 95 (+)

a All reactions were carried out with anthrone 1a (0.24 mmol), nitroalkene 2a (0.2 mmol) and cinchona alkaloid (0.02 mmol) in CH2Cl2 (3.0 mL) for
the specified time.

b Yield of isolated product.
c The enantiomeric excess (ee) was determined by HPLC on a chiral stationary phase (Chiracel AS-H) and the sign of the optical rotation was shown

in the parenthesis.
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corresponding adduct 3a was obtained in 97% yield and
22% ee (Table 1, entry 1). Lowering the reaction temper-
ature to �10 �C and �40 �C improved the ee of 3a to
44% and 51%, respectively (Table 1, entries 2 and 3).
As quinine’s pseudo-enantiomer, quinidine (QD) pro-
duced 3a in similar ee but with opposite enantioselectiv-
ity under otherwise identical conditions (Table 1, entry
4). Using O-benzoylquinine (BzQ), which does not have
free hydroxy group, as the catalyst, the reaction became
sluggish, affording 3a in lower yields with no enantio-
selectivities at 20 �C or �40 �C (Table 1, entries 5 and
6). However, cupreine (CPN) that bears a hydroxy OH
group at C-9 position and a phenolic OH group at C 0-
6 position was found to be a more effective organocata-
lyst in this reaction, affording 3a in much higher ee than
others (Table 1, entry 7 vs entries 3–6). Encouraged by
this result, we further explored cupreine and cupreidine
derivatives as catalysts for this reaction. With the cage-
like conformationally rigid structure, b-isocupreidine (b-
ICPD), as a catalyst, 3a was formed in only 32% ee
(Table 1, entry 8), although it was an effective catalyst
for the Baylis–Hillman reactions due to its high nucleo-
philicity and a phenolic OH group.6 When using O-ben-
zoylcupreine (BzCPN) as the catalyst, the highest ee
(95%) was obtained for this Michael addition (Table 1,
entry 9).9c These results suggest that both the phenolic
hydroxy group at C 0-6 position and the steric structure
around C-9 position played important roles in this
asymmetric Michael addition.

Next, we further optimized the reaction conditions with
O-benzoylcupreine (BzCPN) as the catalyst by examin-
ing the solvent effect, the influence of reaction tempera-
ture and the catalyst loading. As shown in Table 2,
whether in nonpolar or in polar nonprotic solvents, 3a
was produced in high yields (>95%), but in dichloro-
methane (CH2Cl2), 3a was produced in higher ee
(90%) at �10 �C (Table 2, entries 1–4). The lowest yield
and ee were obtained by use of ethanol (EtOH) as a sol-
vent presumably due to that the protic solvent disturbed
the hydrogen-bonding between the catalyst and the sub-
strates (Table 2, entry 5). Lowering the reaction temper-



Table 2. Optimization of the reaction conditionsa

Entry Cat.
(mol %)

Solvent Temperature
(�C)

Time
(h)

Yieldb

(%)
eec

(%)

1 10 Toluene �10 8 97 65
2 10 CH3CN �10 8 96 84
3 10 THF �10 8 95 81
4 10 CH2Cl2 �10 8 98 90
5 10 EtOH �10 16 70 5
6 10 CH2Cl2 �40 8 97 95
7 5 CH2Cl2 �40 12 97 94
8 3 CH2Cl2 �40 12 94 91
9 1 CH2Cl2 �40 16 80 91

a All reactions were carried out with anthrone 1a (0.24 mmol), nitro-
alkene 2a (0.2 mmol), and O-benzoylcupreine (0.02–0.002 mmol) in
solvent (3.0 mL) for the specified time.

b Yield of isolated product.
c The enantiomeric excess (ee) was determined by HPLC on a chiral

stationary phase (Chiracel AS-H).

Table 3. Asymmetric Michael addition of anthrone 1a to nitroalkenes
2a

O

+ R NO2
5 mol% BzCPN

CH2Cl2, -40 oC, 12 h

O

R
NO21a

3
2

Entry 2 R 3 Yieldb (%) eec (%)

1 2b C6H5 3b 94 96
2 2c 4-MeOC6H4 3c 98 91d

3 2d 4-FC6H4 3d 99 96
4 2e 3-FC6H4 3e 99 98
5 2f 4-ClC6H4 3f 98 97
6 2g 2,4-Cl2C6H3 3g 99 99
7 2h 2-ClC6H4 3h 99 97
8 2i 4-BrC6H4 3i 99 94d

9 2j 4-NO2C6H4 3j 96 99e

10 2k 3-NO2C6H4 3k 95 98
11 2l 1-Naphthyl 3l 94 98
12 2m 2-Furyl 3m 93 95
13 2n n-C3H7 3n 91 91e

14 2o (E)-C6H5CH@CH 3o 96 80e

a All reactions were carried out with anthrone 1a (0.24 mmol), nitro-
alkenes 2 (0.2 mmol), and O-benzoylcupreine (0.01 mmol) in CH2Cl2
(3.0 mL) at �40 �C for 12 h.

b Yield of isolated product.
c Otherwise specified, the enantiomeric excess (ee) was determined by

HPLC on a chiral stationary phase (Chiracel AS-H).
d The enantiomeric excess (ee) was determined by HPLC on a chiral

stationary phase (Chiracel OD-H).
e The enantiomeric excess (ee) was determined by HPLC on a chiral

stationary phase (Chiracel AD-H).

Figure 1. X-ray crystal structure of compound 3i.
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ature to �40 �C can significantly improve the enantio-
selectivity of 3a to 95% ee without scarifying the yield
(97%) (Table 2, entry 6). Catalyst loading was also
examined and it was found that 5 mol % was ideal for
this reaction (Table 2, entries 6–9).

With these optimized reaction conditions in hand, the
scope and limitations of this interesting asymmetric
Michael addition were explored. A variety of nitro-
alkenes,13 including those bearing aryl, hetero-aromatic
or alkyl substituents, reacted with anthrone 1a smoothly
to afford the corresponding adducts 3 in high yields in
the presence of 5 mol % of O-BzCPN at �40 �C in
CH2Cl2 (Table 3). As for aryl nitroalkenes with elec-
tron-withdrawing substituents on the benzene ring,
slightly higher enantiomeric excesses than those bearing
electron-donating ones were observed (Table 3, entries
1–10). 1-Naphthyl, hetero-aromatic and aliphatic group
substituted nitroalkenes gave the corresponding adducts
3l–o in good to high enantioselectivities and high yields
as well (Table 3, entries 11–14). The absolute configura-
tion of 3 using O-BzCPN as a catalyst was unambigu-
ously determined by an X-ray diffraction of 3i as R-
configuration (Fig. 1).14

Subsequently, we further investigated the Michael addi-
tion of 1,8-disubstituted anthrone 1b with nitroalkene.
The reaction of 1,8-dihydroxyanthrone 1b with nitroalk-
ene 2f proceeded smoothly to give the corresponding ad-
duct 3p in high yield but only with 9% ee (Scheme 1).
This control experiment suggests that the phenolic hy-
droxy groups in 1,8-dihydroxyanthrone might disturb
the hydrogen-bonding of catalyst with nitroalkenes
resulting in the corresponding adduct 3p with lower
enantioselectivity.

In conclusion, we have developed a highly efficient
asymmetric Michael addition of anthrone to nitroalk-
enes catalyzed by cinchona alkaloid, O-benzoylcupreine
(BzCPN). Both the free phenolic OH group at C-6 0 po-
sition and the steric bulkiness and structure at C-9 posi-
tion in BzCPN are crucial in this reaction to give the
corresponding adducts in higher ee than those of cata-
lysts without free phenolic OH group at C-6 0 position
or with rigid conformation at C-9 position. In this reac-
tion, anthrone functions as a nucleophile rather than
an active diene, exclusively affording the corresponding
Michael addition products in up to 99% ee and yields.
Efforts to elucidate the mechanistic details of this
catalytic system and to further extend the scope and
limitations of this kind of bifunctional organocatalysts
are currently in progress.
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Scheme 1. Michael addition of substituted anthrone 1b with nitroalkene 2f.
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